Новости презентация биотехнологии

Найдите нужное среди 340 529 стоковых фото, картинок и изображений роялти-фри на тему «биотехнологии» на iStock. Сотрудники американской биотехнологической компании Bioquark планируют доказать, что смерть мозга не является необратимой. Последние новости биотехнологий в России: достижения и анонсы мероприятий, предстоящие проекты.

Новое слово в биотехнологиях

Таким чекпойнтом для многих молодых биологов, биотехнологов, предпринимателей стали зимние школы «Современная биология и Биотехнологии будущего». Биология, презентация, доклад, проект на тему. Последние новости по теме биотехнологии: Исследование: 90% компаний Европы инвестируют в наукоемкие технологии. Посмотрите презентацию на 13 слайдах, которую биотехнология использовала для привлечения 120 миллионов долларов. Биотехнология — наука, изучающая использование живых организмов и биологических процессов в производстве. Industry expansion has followed such innovation. The global biotechnology market is currently valued at 752.8 Billion — and growing. The development of breakthrough health initiatives from biotech will.

Презентация биотехнологической компании Евроген

В России с 1999 года зарегистрировано 7 трансгенных культур: соя, сахарная свёкла, 3 сорта кукурузы, 2 сорта картофеля. Генетически модифицированные продукты Слайд 12 Использование генетически модифицированных организмов ГМО сопровождается несколькими рисками. Экологи опасаются, что генетически измененные формы могут случайно проникнуть в дикую природу, что приведет к катастрофическим изменениям в экосистемах. Сторонники ГМП утверждают, что генная инженерия спасёт население земли от голода.

Форум посвящен 300-летию Российской академии наук. Задача Форума — дать возможность для встречи и научных дискуссий специалистам в области разработки фундаментальных основ биотехнологий и специалистам, внедряющим инновационные разработки в клиническую практику, фармацевтические и пищевые производства. Попов и Федерального научного центра пищевых систем им. В работе Форума примут участие российские специалисты и ученые, в том числе 18 членов РАН, а также представители научного сообщества таких стран, как Индия три члена Индийской академии биомедицинских наук, в том числе Вице-президент Академии — профессор Hari S. В рамках Форума будут обсуждаться такие важные направления, как Современные вызовы и перспективные направления развития биотехнологий, Современные подходы в ранней диагностике, лечении и реабилитации пациентов при социально значимых заболеваниях, Применение нанотехнологий и IT технологий в здравоохранении и биомедицине, Возможности разработки и внедрения инновационных биомедицинских технологий на базе Университетской онкологической клиники, Профилактика онкологических заболеваний, Экологическая безопасность в биотехнологии и медицине, Пищевые биотехнологии и стратегии развития пищевых систем, Функциональная и специализированная пищевая продукция и др.

В рамках Форума пройдет Третья Международная конференция «Перспективные подходы и технологии в задачах биомедицины и клинической практики» Сопредседатели: академик Ю.

Было доказано, что с помощью подобных соединений можно подавить функционирование определенных матричных РНК живой клетки, воздействуя на синтез белков, а также защитить клетки от вирусной инфекции. Так, олигонуклеотиды, комплементарные последовательности матричной РНК, подавляют экспрессию генов на стадии трансляции, т.

Но терапевтические нуклеиновые кислоты могут вмешиваться и в другие молекулярно-биологические процессы, например, исправлять нарушения в процессе сплайсинга при созревании мРНК. Ведутся испытания ряда противовирусных и противовоспалительных препаратов, созданных на основе искусственных аналогов олигонуклеотидов, а некоторые из них уже начинают внедряться в клиническую практику. Ее организатором стал профессор Йельского университета, Нобелевский лауреат С.

В лаборатории ведутся исследования физико-химических и биологических свойств новых перспективных искусственных олигонуклеотидов, на основе которых разрабатываются РНК-направленные противобактериальные и противовирусные препараты. В рамках проекта, руководимого С. Альтманом, было выполнено масштабное систематическое исследование воздействия различных искусственных аналогов олигонуклеотидов на патогенные микроорганизмы: синегнойную палочку, сальмонеллу, золотистый стафилококк, а также вирус гриппа.

Были определены гены-мишени, воздействием на которые можно наиболее эффективно подавить эти патогены; проводится оценка технологических и терапевтических характеристик самых действующих аналогов олигонуклеотидов, в том числе проявляющих антибактериальную и противовирусную активность. Эти новые соединения электронейтральны, устойчивы в биологических средах и прочно связываются с РНК- и ДНК-мишенями в широком диапазоне условий. Благодаря спектру уникальных свойств они перспективны для применения в качестве терапевтических агентов, а также могут быть использованы для повышения эффективности средств диагностики, основанных на биочиповых технологиях.

Среди коммерческих фирм лидером в создании терапевтических нуклеиновых кислот является американская компания Ionis Pharmaceuticals, Inc. Препараты Ionis против ряда других заболеваний проходят клинические испытания. Более эффективным является ферментативное разрезание мРНК, спровоцированное связыванием терапевтического олигонуклеотида с мишенью.

Этот фермент и сам представляет собой РНК с каталитическими свойствами рибозим. Чрезвычайно мощным средством подавления активности генов оказались не только антисмысловые нуклеотиды, но и двуцепочечные РНК, действующие по механизму РНК-интерференции. Использование этого механизма открывает новые возможности для создания широкого спектра высокоэффективных нетоксичных препаратов для подавления экспрессии практически любых, в том числе вирусных, генов.

Молекулы нуклеиновых кислот, избирательно связывающие определенные вещества, называются аптамерами. На их основе могут быть получены препараты, блокирующие функции любых белков: ферментов, рецепторов или регуляторов активности генов. В настоящее время получены уже тысячи самых разных аптамеров, находящих широкое применение в медицине и технике.

Модификации по азотистому основанию придают таким аптамерам дополнительную «белковоподобную» функциональность, что обеспечивает высокую стабильность их комплексам с мишенями. Кроме того, это увеличивает вероятность успешного отбора сомамеров к тем соединениям, к которым подобрать обычные аптамеры не удалось. Развитие синтетической биологии происходит на базе революционного прорыва в области олигонуклеотидного синтеза.

Синтез искусственных генов стал возможным благодаря созданию высокопроизводительных синтезаторов генов, в которых использованы микро- и нанофлюидные системы. Примером развития микрочиповых технологий могут служить американская фирма LC Sciences и немецкая Febit Gmbh. Биочиповый реактор производства LC Sciences с использованием стандартных реагентов для олигонуклеотидного синтеза позволяет одновременно синтезировать 4—8 тыс.

Микрочиповый реактор фирмы Febit Gmbh состоит из 8 независимых фрагментов, на каждом из которых одновременно синтезируется до 15 тыс. И на очереди множество подобных препаратов. Этот сенсор способен «улавливать» молекулы лишь определенных белков, которые необходимо детектировать в образце.

В настоящее время по этой схеме конструируются переключаемые биосенсоры к модифицированным белкам крови, служащим маркерами диабета. Новым объектом среди терапевтических нуклеиновых кислот является и сама матричная информационная РНК. При попадании в клетку мРНК действуют в ней как ее собственные.

В результате клетка получает возможность производить белки, которые могут предотвратить или остановить развитие заболевания. Большая часть таких потенциальных терапевтических препаратов направлена против инфекционных вирус гриппа, вирус Зика, цитомегаловирус и др. Белки как лекарство Огромные успехи синтетической биологии за последние годы отразились и в разработке технологий производства терапевтических белков, уже широко применяющихся в клинике.

В первую очередь это относится к противоопухолевым антителам, с помощью которых стала возможной эффективная терапия целого ряда онкологических заболеваний. Сейчас появляются все новые противоопухолевые белковые препараты.

Слайд 8 В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей, осуществить контроль ферментации продуктов растительного и животного происхождения. Слайд 9 Первый антибиотик — пенициллин пенициллин— удалось выделить и очистить до приемлемого уровня в 1940 году, что дало новые задачи: поиск и налаживание промышленного производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня биобезопасности новых лекарственных препаратов.

Флеминг Слайд 10 Биоинженерия или биомедицинская инженерия это дисциплина, направленная на углубление знаний в области инженерии, биологии и медицины и укрепление здоровья человечества за счёт междисциплинарных разработок, которые объединяют в себе инженерные подходы с достижениями биомедицинской науки и клинической практики. Биоинженеры работают на благо человечества, имеют дело с живыми системами и применяют передовые технологии для решения медицинских проблем. Специалисты по биомедицинской инженерии могут участвовать в создании приборов и оборудования, в разработке новых процедур на основе междисциплинарных знаний, в исследованиях, направленных на получение новой информации для решения новых задач. Слайд 11 Важные достижения биоинженерии Среди важных можно упомянуть разработку искусственных суставов, магниторезонансной томографии, кардиостимуляторов, артроскопии, ангиопластики, биоинженерных протезов кожи, почечного диализа, аппаратов искусственного кровообращения. Слайд 12 Также одним из основных направлений биоинженерных исследований является применение методов компьютерного моделирования для создания белков с новыми свойствами, а также моделирования взаимодействия различных соединений с клеточными рецепторами в целях разработки новых фармацевтических препаратов Раздел медицины, изучающий с теоретических позиций организм человека, его строение и функцию в норме и патологии, патологические состояния, методы их диагностики, коррекции и лечения.

Слайд 14 Наномедицина Слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры.

Презентация к исследовательской работе «Зеленые биотехнологии»

Дисперсия света Презентация к уроку Электрический ток в различных средах Презентация для классного часа. Презентация на тему "Биотехнология: достижения и перспективы развития", предназначена для сопровождения урока по аналогичной теме для обучающихся 10 класса. ЗАДАЧИ, МЕТОДЫ И ДОСТИЖЕНИЯ - Презентация абсолютно бесплатно. В данной презентации речь идет о биотехнологии, ее задачах и методах. Презентация, обзор современных методов биотехнологии и анализ перспектив их развития к разделу Основы селекции растений, животных и микроорганизмов, Биология, 9. производственное использование биологических агентов для получения ценных продуктов и осуществления целевых превращений в биотехнологических процессах.

Успехи современной биотехнологии

Биотехнология: современные достижения, перспективы развития 18 сентября 2023 Новости официальные В Туапсе с 12 по 15 сентября проходила XI Международная научно-практическая конференция «Биотехнология: наука и практика», организованная нашим университетом. Целью мероприятия стало вовлечение молодого поколения в научные проекты и процессы в области биотехнологии. По традиции работа конференции проходила по нескольким направлениям: конференция молодых учёных, выставка достижений биотехнологических компаний и круглые столы для обмена опытом и обсуждения перспектив сотрудничества. Кроме научных и образовательных сессий было место для проведения заседаний школы молодых ученых «Биоинженерия для решения инновационных задач промышленных технологий» Федеральной научно-технической программы развития генетических технологий на 2019-2027 годы.

Горбатова РАН, Ирина Рудольфовна Куклина, исполнительный директор Аналитического центра международных научно-технологических и образовательных программ и другие гости. Основными темами докладов Форума стали применение нанотехнологий и IT в здравоохранении и медицине, современные подходы к диагностике, лечению и реабилитации пациентов при социально значимых заболеваниях, разработка и внедрение инновационных биомедицинских технологий, профилактика онкологических заболеваний, биотехнологии в производстве продуктов питания в том числе, функциональных и специализированных и другие направления. Секция Форума «Пищевые биотехнологии и стратегии развития пищевых систем» прошла во второй день работы Форума и была организована в ФНЦ пищевых систем имени В. Горбатого РАН.

С пленарными докладами о новых разработках в области пищевых технологий, функционального и специализированного питания выступили профессор Линдси Браун из Университета Гриффита в Австралии и доцент Института пищевых наук Чжэцзянской академии сельскохозяйственных наук Кэ Кэ Чжао, Китай. Академик РАН Владимир Алексеевич Черепенин рассказал о возможности применения мощных ультракоротких электромагнитных импульсов для борьбы с онкологическими заболеваниями, в том числе с карциномой.

Термин «клонирование» в том же смысле нередко применяют и по отношению к клеткам многоклеточных организмов. Клонированием называют также получение нескольких идентичных копий наследственных молекул молекулярное клонирование. Наконец, клонированием также часто называют биотехнологические методы, используемые для искусственного получения клонов организмов, клеток или молекул. Группа генетически идентичных организмов или клеток — клон.

Слайд 20 Трансгенные растения и животные— это те организмы, которым «пересажены» гены других организмов. Слайд 21 Биотехнология в космосе Изучение биодеградирующего действия микроорганизмов, находящихся в атмосфере пилотируемых космических станций, на конструкционные элементы станции и находящееся в гермообъеме оборудование. Изучается влияние факторов космического полета на различные биологические объекты с целью получения штаммов с повышенной активностью. PS: В нашем.

Численность населения в мире уже превысила 7 млрд. Несмотря на то, что за последние 40 лет традиционное производство сельскохозяйственной продукции выросло более чем в 2 раза, дальнейший рост представляется маловероятным. Большая часть пригодных к возделыванию земель уже вовлечена в сельскохозяйственное производство. Неудивительно, что первые опыты по выращиванию генно-модифицированных культурных растений вызвали в мировом сообществе гигантский ажиотаж и веру в светлое будущее. Технология обещала быстро завалить мир продукцией, полученной из новых растений со значительно увеличенным урожаем, устойчивых к вредителям и неблагоприятным факторам среды. Реальность, впрочем, несколько скорректировала эти радужные мечты. Генетическая инженерия отличается от традиционной селекции тем, что при селекции перенос генов осуществляется только между близкородственными растениями, генная же инженерия позволяет перенести в растение гены из любого организма. Генетическая инженерия - получение новых комбинаций генетического материала путем проводимых вне клетки манипуляций с молекулами нуклеиновых кислот и переноса созданных конструкций генов в живой организм. Цель заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека. Необыкновенная притягательность трансгенов кроется также в том существенном факте, что биотехнологии позволяют выводить новые культуры за 2-3 года. Обычные же методы селекции путем отбора и скрещивания - это 10 и более лет. Технология рекомбинантных ДНК использует следующие методы: - расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами; - быстрое секвенирование всех нуклеотидов в очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им; - конструирование рекомбинантной ДНК; - клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий; - введение рекомбинантной ДНК в клетки непосредственно или с помощью переносчиков — модифицированных бактерий или вирусов. В 70-х годах группа американских исследователей сообщила о выделении в лаборатории первой гибридной молекулы ДНК — то есть генетического материала, объединившего в себе гены разных организмов. С этого момента формально и взяла старт генная инженерия. В 1983 году американцы вывели трансгенный табак, неуязвимый для определенного вида вредителей. Уже через 4 года трансгенные растения, устойчивые к насекомым и гербицидам, поступили в массовую продажу. Сейчас самые распространенные ГМ-растения - соя, кукуруза, масличный рапс и хлопок. В некоторых странах для выращивания одобрены трансгенные помидоры, рис, картофель. Чаще всего культурные растения наделяют устойчивостью к гербицидам, насекомым или вирусам. Устойчивость к гербицидам позволяет «избранному» растению быть невосприимчивым к смертельным для других дозам химикатов. В результате поле очищается от всех лишних растений, то есть сорняков, а культуры, устойчивые к гербицидам, выживают. Устойчивая к насекомым флора становится поистине бесстрашной: например, непобедимый колорадский жук, съедая листик картофеля, погибает. Почти все такие растения содержат встроенный ген природного токсина, вырабатываемого земляной бактерией Bacillus thuringiensis. Был созданы растения, в которые для увеличения морозоустойчивости вживили ген североамериканской камбалы. Гибрид томата и рыбы получил неофициальную кличку "завтрак Франкенштейна". Проводились также опыты по выращиванию помидоров-гигантов кубической формы, риса с повышенным содержанием каротина, изменению цвета хлопка, и даже по созданию растений, светящихся в темноте. Несмотря на первоначальные успехи, у генной инженерии растений сразу же появились скептики. Противники ГМО утверждали, что влияние новых белков, которые продуцируют встроенные в ГМО чужеродные гены, неизвестно и последствия невозможно предугадать. К тому же часть генетического материала переносчиков могла встраиваться в геном полученного организма с непредсказуемыми следствиями. К сожалению, такие опасения оказались обоснованными. Как оказалось, исследования по влиянию ГМО на животные организмы проводились в слишком короткие сроки, недостаточные для полного изучения влияния. Мало того, по признанию некоторых ученых, работающих в биотехнологической отрасли, они были вынуждены изменить данные своих результатов по «настойчивой просьбе» спонсоров. Например, еще первое предмаркетинговое исследование генетически модифицированного томата на безопасность, проведенное в США в 1994 г. Однако позже открылось, что в течение двух недель после его проведения 7 из 40 подопытных крыс умерли, и причина их смерти неизвестна. В конце 90-х годов английские ученые на основании проведенных опытов впервые заявили о том, что употребление подопытными крысами генетически модифицированного картофеля привело к серьезным повреждениям их внутренних органов и иммунной системы. У животных возник целый набор серьезных изменений желудочно-кишечного тракта, печени, зоба, селезенки. Но самое зловещее - уменьшился объем мозга. Тогда же были вовремя остановлены опыты по введению в сою генов бразильского ореха. В продажу мог быть выпущен аллерген, смертельно опасный для тысяч людей, не переносящих орехи. Причем тестирование животных не выявило опасности, а тестирование ГМ-продуктов на людях-аллергиках не входит в обязательную программу испытаний новых продуктов. Так что аллерген был вовремя замечен только по счастливой случайности. Проведенная в России в 2006 году проверка влияния ГМ-сои, устойчивой к гербициду раундапу, на потомство лабораторных крыс показала повышенную смертность крысят первого поколения, недоразвитость выживших крысят, патологические изменения в органах и отсутствие второго поколения. Возможным ущербом для здоровья людей опасность ГМО-растений не ограничивается. Доказано, что некоторые ГМ-растения смертельно опасны для живущих на поле или рядом с ним грызунов и насекомых. Последствия нарушения биоценоза в окрестностях плантаций таких ГМ-растений никто не берётся предсказать. Также существует реально доказанная опасность передачи трансгена от культурного растения его дикорастущим сородичам. В результате может получиться устойчивый к действию пестицидов и гербицидов, не боящийся ни жары, ни холода, не угрызаемый жуками и паразитами и страшно плодовитый суперсорняк. По этой причине, в США, являющихся лидером в создании и производстве ГМ-растений, плантации натуральных и генетически модифицированных растений далеко разнесены друг от друга. Например, во Флориде ГМ-хлопок разрешено выращивать только в северной части штата, а натуральный — в южной. Обещанное увеличение урожая оказалось не столь значительным, чтобы закрыть глаза на многочисленные страшилки генно-модифицированных растений. В итоге восторженное настроение в мире сменилось на осторожное. В Европе целые города и округи позиционируют себя как «зоны, свободные от ГМО».

Биотехнология — презентация

Загрузите шаблоны и темы биотехнология для своей следующей презентации. В настоящее время прогресс в области биотехнологии тесно связан с применением методов генной и клеточной инженерии, а также клонированием. Найдите нужное среди 340 529 стоковых фото, картинок и изображений роялти-фри на тему «биотехнологии» на iStock. Лента новостей. Курс евро на 20 апреля EUR ЦБ: 99,58 (-0,95) Инвестиции, 19 апр, 16:51 Курс доллара на 20 апреля USD ЦБ: 93,44 (-0,65) Инвестиции, 19 апр, 16:51.

Презентация факультета биотехнологии и промышленной экологии

Но утомительное. Конкурс на школу был выше, работа организаторов — слаженней, ожидания — больше и страх разочарования — тоже. На школу приехали лучшие русскоязычные ученые, предприниматели и инвесторы, а главное — молодые и перспективные участники — «дети» — будущее российской науки. Среди заокских январских сугробов вдруг возникли толпы молодых людей, с горящими глазами обсуждающих едва появившуюся тогда криспр-историю — и способы нахождения инвестиций в науку; карьерные траектории — и механизмы долговременной памяти; бороду Гельфанда — и прическу Северинова. Между чуть знакомыми людьми прямо на глазах начинались химические реакции, некоторые из которых продолжаются и по сей день.

Школа стала перекрестком, где сплетаются жизни, меняются судьбы и научные траектории направляются на взлет рис. А со стороны всё выглядит так невинно: лекции, семинары, круглые столы и ночные посиделки за пивом. На этой же школе, кстати, произошло знакомство команды Future Biotech с ее нынешним исполнительным директором Денисом Куреком , не замедлившим присоединиться ко всем образовательным инициативам ребят. За подробностями лучше всего обратиться к официальному пост-релизу или неофициальному отзыву по итогам школы; а также не помешает посмотреть фотографии.

Пять дней лекций обо всём на свете, дебатов, бизнес-игры и научных боев. А самое главное — люди. Вы с равным вниманием слушали и об анаэробном метаболизме бактерий, и о масс-спектрометрии, и об иммунологических аспектах атеросклероза. Нереальное вдохновение от вас всех!

А сколько новых знаний! Спасибо вам! Оригинал: www. Рисунок 5.

Научные бои и прочая самодеятельность. На осеннем интенсиве 2015 года и на ЗШ-2016 прошли настоящие Научные бои под руководством их основателей из Политехнического музея. Так и повелось Так и повелось. Начиная с 2012 года, провели две летние школы «Биотехнологии будущего» об одной уже рассказали выше, о другой — 2013 года — для краткости тут рассказано не будет , четыре зимние совместные «Современная биология и Биотехнологии будущего» и еще два осенних интенсива — в 2014 и 2015 годах интенсив — это что-то вроде школы, только короче по времени и без выезда из Москвы — то есть без совместного проживания и ночных посиделок.

Мероприятия крепчали и матерели: ясны уже были подводные камни организации, закреплялись характер и стиль школы, а постепенно сформировавшееся сообщество помогало в организации и самим своим существованием давало понять, насколько всё это нужно. Общая концепция получилась такая. Летняя школа и осенний интенсив посвящены больше бизнесу, чем науке. На них зовут: лекторами — молодых, но уже многого добившихся научных предпринимателей и предприимчивых ученых, а также бизнес-ангелов, инвесторов и представителей стартап-инкубаторов; участниками — тоже молодых, но еще не так многого добившихся ученых и предпринимателей.

Лекции посвящены не столько тому, что сейчас интересного творится в науке, сколько как это интересное ухватить, превратить в продукт и отправить из лаборатории в реальную жизнь. Особый акцент осенних интенсивов — карьерные траектории: чем можно в жизни заняться человеку, получившему образование в сфере наук о жизни, ну или глубоко интересующемуся ими. Осенью 2015 года на интенсиве провели круглый стол, посвященный вопросам научной политики, на мысли о которых навело закрытие фонда «Династия» , традиционно поддерживавшего всю серию этих зимних школ. На интенсив приехал сам основатель и бессменный руководитель фонда Дмитрий Борисович Зимин рис.

Главное правило отбора участников на школу — ощущение, что человек дорос до потолка в той области, которой занимался, и теперь должен что-то менять в своей жизни. Дело тут в том, что многие люди совершенно не представляют себе весь тот веер возможностей, который в наше время дает биотехнологический бэкграунд. Можно остаться в фундаментальной науке, работать в лабе, капать в пробирки, постепенно достигнуть профессиональных и карьерных высот и, может быть, в конце концов совершить какое-нибудь великое открытие. Можно бросить фундаментальную науку и заняться прикладной: на основе своих научных идей организовать стартап и возможно добиться невообразимых успехов в бизнесе.

Можно пойти наемным сотрудником в фармацевтическую компанию или биотехнологическое производство зарабатывать хорошие деньги. Можно вообще уйти из науки как таковой и применить свои знания и опыт биотехнолога в финансовой сфере: заняться консалтингом, инвестированием в различные проекты и так далее. Можно пойти в госструктуры: стать чиновником, регулирующим отношения науки и власти, и налаживать научный процесс с этой непростой стороны. Можно, наконец, стать популяризатором науки: писать научно-популярные статьи и книги, делать сайты, снимать научные фильмы и мультики, организовывать научные музеи, праздники науки и так далее.

Иными словами, перед молодым и талантливым биотехнологом открыт весь мир, а не только двери лаборатории, и задача летних школ и осенних интенсивов — показать ему, как пользоваться теми потрясающими возможностями, какие дает ему профессия. Итак, прошел день с окончания школы, я немного пришел в себя, вспомнил алфавит и теперь наконец могу что-то написать. Ну, во-первых, привет чатику SC2TV! Ребята, с вами просто нереально весело!

Стоит также отметить, что с каждым днем аудитория чата становилась всё серьезнее, и в последний день я даже уже не всегда улавливал нить рассуждений, так что пора переименовывать ресурс в SCienceTV! Что-то я всё про чатик, да про чатик... Но кроме чатика, стоит отметить просто великолепнейших лекторов — цвет и свет российской науки, а самое главное — добрых, умных, интересных и открытых для общения людей! Это профессионалы высшего уровня, их просто невероятно приятно слушать, с ними бесконечно полезно общаться, и я горжусь, что мне выпала честь познакомиться с ними.

Ну и, конечно, теперь немного про тех, без кого ничего бы и не было, то есть организаторов! Ребята, вы просто нереально крутые, именно благодаря вам у стольких молодых ученых и не только ученых появилась возможность познакомиться друг с другом, с топовыми людьми из мира науки и самыми последними достижениями и трендами. Итак, еще раз всем-всем-всем огромное спасибо за эти драйв, фан и дружественную атмосферу, уверен, что все мы вынесли кучу пользы из этой крайне насыщенной недели! До новых встреч особенно в чатике на стримах!

Артём Богомолов Оригинал: www. Рисунок 6. Непременная часть долгих вечеров на зимних школах — круглые столы и дебаты.

Важным источником информации о состоянии здоровья могут служить так называемые некодирующие РНК, т. За последние годы было установлено, что в клетках образуется множество различных некодирующих РНК, участвующих в регуляции самых разных процессов на уровне клеток и целого организма. Изучение спектра микроРНК и длинных некодирующих РНК при различных состояниях открывает широкие возможности для быстрой и эффективной диагностики.

УЗНАТЬ ВРАГА В ЛИЦО Современные технологии с применением биологических микрочипов позволяют быстро и эффективно идентифицировать возбудителей ряда болезней туберкулеза, СПИДа, гепатитов В и С, сибирской язвы, инфекций новорожденных , фиксировать наличие определенных биотоксинов, определять хромосомные транслокации при лейкозах, регистрировать белковые маркеры онкозаболеваний, определять генетическую предрасположенность к болезням и индивидуальную чувствительность к некоторым типам терапии. Технологии также можно использовать для генетической идентификации личности при проведении судебно-генетических экспертиз и формирования баз данных ДНК. В рамках первого проекта с участием специалистов ИМБ им. Энгельгардта созданы микрочипы, позволяющие точно идентифицировать различные штаммы вирусов оспы и герпеса. Были разработаны два варианта конструкции микрочипов на стеклянной подложке и с гелевыми спотами , а также портативный флуоресцентный детектор для их анализа. Биочипы представляют собой миниатюрные приборы для параллельного анализа специфических биологических макромолекул.

Идея создания подобных устройств родилась в Институте молекулярной биологии им. Энгельгардта Российской академии наук Москва еще в конце 1980-х гг. За короткое время биочиповые технологии выделились в самостоятельную область анализа с огромным спектром практических приложений, от исследования фундаментальных проблем молекулярной биологии и молекулярной эволюции до выявления лекарственно устойчивых штаммов бактерий. Сегодня в ИМБ РАН производятся и используются в медицинской практике оригинальные тест-системы для идентификации возбудителей ряда социально значимых инфекций, в том числе таких как туберкулез, с одновременным выявлением их резистентности к антимикробным препаратам; тест-системы для оценки индивидуальной переносимости препаратов группы цитостатиков и многое другое. На одном таком чипе на площади менее 2 см2 могут располагаться миллионы точек-спотов размером в несколько микрон. Такой биосенсор позволяет в реальном времени отслеживать взаимодействие биомолекул.

Его составной частью является одна из таких взаимодействующих молекул, которая играет роль молекулярного зонда. Зонд захватывает из анализируемого раствора молекулярную мишень, по наличию которой можно судить о конкретных характеристиках здоровья пациента. Глубокое понимание механизма возникновения заболевания, в который вовлечены нуклеиновые кислоты, дает возможность сконструировать терапевтические нуклеиновые кислоты, восполняющие утраченную функцию либо блокирующие возникшую патологию. Двуцепочечные молекулы нуклеиновых кислот, ДНК и РНК, формируются благодаря взаимодействию пар нуклеотидов, способных к взаимному узнаванию и образованию комплексов за счет формирования водородных связей. В Новосибирске были созданы и первые препараты ген-направленного действия для избирательной инактивации вирусных и некоторых клеточных РНК. Подобные ген-направленные терапевтические препараты сегодня активно разрабатываются на основе нуклеиновых кислот, их аналогов и конъюгатов антисмысловых олигонуклеотидов, интерферирующих РНК, аптамеров, систем геномного редактирования.

Было доказано, что с помощью подобных соединений можно подавить функционирование определенных матричных РНК живой клетки, воздействуя на синтез белков, а также защитить клетки от вирусной инфекции. Так, олигонуклеотиды, комплементарные последовательности матричной РНК, подавляют экспрессию генов на стадии трансляции, т. Но терапевтические нуклеиновые кислоты могут вмешиваться и в другие молекулярно-биологические процессы, например, исправлять нарушения в процессе сплайсинга при созревании мРНК. Ведутся испытания ряда противовирусных и противовоспалительных препаратов, созданных на основе искусственных аналогов олигонуклеотидов, а некоторые из них уже начинают внедряться в клиническую практику. Ее организатором стал профессор Йельского университета, Нобелевский лауреат С. В лаборатории ведутся исследования физико-химических и биологических свойств новых перспективных искусственных олигонуклеотидов, на основе которых разрабатываются РНК-направленные противобактериальные и противовирусные препараты.

В рамках проекта, руководимого С. Альтманом, было выполнено масштабное систематическое исследование воздействия различных искусственных аналогов олигонуклеотидов на патогенные микроорганизмы: синегнойную палочку, сальмонеллу, золотистый стафилококк, а также вирус гриппа. Были определены гены-мишени, воздействием на которые можно наиболее эффективно подавить эти патогены; проводится оценка технологических и терапевтических характеристик самых действующих аналогов олигонуклеотидов, в том числе проявляющих антибактериальную и противовирусную активность. Эти новые соединения электронейтральны, устойчивы в биологических средах и прочно связываются с РНК- и ДНК-мишенями в широком диапазоне условий. Благодаря спектру уникальных свойств они перспективны для применения в качестве терапевтических агентов, а также могут быть использованы для повышения эффективности средств диагностики, основанных на биочиповых технологиях. Среди коммерческих фирм лидером в создании терапевтических нуклеиновых кислот является американская компания Ionis Pharmaceuticals, Inc.

Препараты Ionis против ряда других заболеваний проходят клинические испытания. Более эффективным является ферментативное разрезание мРНК, спровоцированное связыванием терапевтического олигонуклеотида с мишенью. Этот фермент и сам представляет собой РНК с каталитическими свойствами рибозим. Чрезвычайно мощным средством подавления активности генов оказались не только антисмысловые нуклеотиды, но и двуцепочечные РНК, действующие по механизму РНК-интерференции.

На ранних стадиях болезни корректировать состояние организма во многих случаях можно «мягкими» методами: меняя характер питания, используя добавочные микроэлементы, витамины и пробиотики. В последнее время особое внимание уделяется возможностям корректировки отклонений в составе кишечной микрофлоры человека, которые ассоциированы с развитием большого числа патологических состояний. Подробнее Такую задачу можно решить, обеспечив постоянный эффективный контроль за состоянием организма, который позволил бы избегать действия неблагоприятных факторов и предупреждать развитие заболевания, выявляя патологический процесс на самом раннем этапе, и ликвидировать саму причину возникновения болезни. В этом смысле основную задачу медицины будущего можно сформулировать как «управление здоровьем». Сделать это вполне реально, если иметь полную информацию о наследственности человека и обеспечить мониторинг ключевых показателей состояния организма. Отдельно стоит выделить создание методов ранней неинвазивной диагностики жидкостная биопсия опухолевых заболеваний, основанных на анализе внеклеточной ДНК и РНК. Источником таких нуклеиновых кислот служат как погибшие, так и живые клетки. В норме их концентрация относительно низка, но обычно возрастает при стрессе и развитии патологических процессов. При возникновении злокачественной опухоли в кровоток попадают нуклеиновые кислоты, выделяемые раковыми клетками, и такие характерные циркулирующие РНК и ДНК могут служить маркерами заболевания. Сейчас на основе подобных маркеров разрабатываются подходы к ранней диагностике рака, методы прогнозирования риска его развития, а также оценки степени тяжести течения болезни и эффективности терапии. Например, в Институте химической биологии и фундаментальной медицины СО РАН было показано, что при раке предстательной железы повышается степень метилирования определенных участков ДНК. Был разработан метод, позволяющий выделить из образцов крови циркулирующую ДНК и проанализировать характер ее метилирования. Этот способ может стать основой точной неинвазивной диагностики рака простаты, которой на сегодня не существует. Важным источником информации о состоянии здоровья могут служить так называемые некодирующие РНК, т. За последние годы было установлено, что в клетках образуется множество различных некодирующих РНК, участвующих в регуляции самых разных процессов на уровне клеток и целого организма. Изучение спектра микроРНК и длинных некодирующих РНК при различных состояниях открывает широкие возможности для быстрой и эффективной диагностики. УЗНАТЬ ВРАГА В ЛИЦО Современные технологии с применением биологических микрочипов позволяют быстро и эффективно идентифицировать возбудителей ряда болезней туберкулеза, СПИДа, гепатитов В и С, сибирской язвы, инфекций новорожденных , фиксировать наличие определенных биотоксинов, определять хромосомные транслокации при лейкозах, регистрировать белковые маркеры онкозаболеваний, определять генетическую предрасположенность к болезням и индивидуальную чувствительность к некоторым типам терапии. Технологии также можно использовать для генетической идентификации личности при проведении судебно-генетических экспертиз и формирования баз данных ДНК. В рамках первого проекта с участием специалистов ИМБ им. Энгельгардта созданы микрочипы, позволяющие точно идентифицировать различные штаммы вирусов оспы и герпеса. Были разработаны два варианта конструкции микрочипов на стеклянной подложке и с гелевыми спотами , а также портативный флуоресцентный детектор для их анализа. Биочипы представляют собой миниатюрные приборы для параллельного анализа специфических биологических макромолекул. Идея создания подобных устройств родилась в Институте молекулярной биологии им. Энгельгардта Российской академии наук Москва еще в конце 1980-х гг. За короткое время биочиповые технологии выделились в самостоятельную область анализа с огромным спектром практических приложений, от исследования фундаментальных проблем молекулярной биологии и молекулярной эволюции до выявления лекарственно устойчивых штаммов бактерий. Сегодня в ИМБ РАН производятся и используются в медицинской практике оригинальные тест-системы для идентификации возбудителей ряда социально значимых инфекций, в том числе таких как туберкулез, с одновременным выявлением их резистентности к антимикробным препаратам; тест-системы для оценки индивидуальной переносимости препаратов группы цитостатиков и многое другое. На одном таком чипе на площади менее 2 см2 могут располагаться миллионы точек-спотов размером в несколько микрон. Такой биосенсор позволяет в реальном времени отслеживать взаимодействие биомолекул. Его составной частью является одна из таких взаимодействующих молекул, которая играет роль молекулярного зонда. Зонд захватывает из анализируемого раствора молекулярную мишень, по наличию которой можно судить о конкретных характеристиках здоровья пациента. Глубокое понимание механизма возникновения заболевания, в который вовлечены нуклеиновые кислоты, дает возможность сконструировать терапевтические нуклеиновые кислоты, восполняющие утраченную функцию либо блокирующие возникшую патологию. Двуцепочечные молекулы нуклеиновых кислот, ДНК и РНК, формируются благодаря взаимодействию пар нуклеотидов, способных к взаимному узнаванию и образованию комплексов за счет формирования водородных связей. В Новосибирске были созданы и первые препараты ген-направленного действия для избирательной инактивации вирусных и некоторых клеточных РНК. Подобные ген-направленные терапевтические препараты сегодня активно разрабатываются на основе нуклеиновых кислот, их аналогов и конъюгатов антисмысловых олигонуклеотидов, интерферирующих РНК, аптамеров, систем геномного редактирования. Было доказано, что с помощью подобных соединений можно подавить функционирование определенных матричных РНК живой клетки, воздействуя на синтез белков, а также защитить клетки от вирусной инфекции. Так, олигонуклеотиды, комплементарные последовательности матричной РНК, подавляют экспрессию генов на стадии трансляции, т. Но терапевтические нуклеиновые кислоты могут вмешиваться и в другие молекулярно-биологические процессы, например, исправлять нарушения в процессе сплайсинга при созревании мРНК.

Так возникло важнейшее направление биотехнологии, основанное на использовании процессов микробиологического синтеза. Слайд 10 Слайд 11 Микробиологический синтез Развитие микробиологической промышленности, выпускающей ценные продукты биосинтеза, позволило накопить очень важный опыт конструирования, производства и эксплуатации принципиально нового промышленного оборудования. Современное микробиологическое производство — производство очень высокой культуры. Технология его очень сложна и специфична, обслуживание аппаратуры требует овладения специальными навыками, ведь всё производство работает только в условиях строжайшей стерильности: стоит попасть в ферментатор лишь одной клетке микроорганизма другого вида, как всё производство может остановиться — «чужак» размножится и начнёт синтезировать совсем не то, что нужно человеку. Слайд 12 В настоящее время с помощью микробиологического синтеза производят антибиотики, ферменты, аминокислоты, полупродукты для дальнейшего синтеза разнообразных веществ, феромоны вещества, с помощью которых можно управлять поведением насекомых , органические кислоты, кормовые белки и другие. Технология производства этих веществ хорошо отработана, получение их микробиологическим путём экономически выгодно. Слайд 13 В настоящее время с помощью микробиологического синтеза производят антибиотики, ферменты, аминокислоты, полупродукты для дальнейшего синтеза разнообразных веществ, феромоны вещества, с помощью которых можно управлять поведением насекомых , органические кислоты, кормовые белки и другие. Возможные способы применения массовой культуры водорослей. Слайд 15 Иммобилизованные ферменты находят применение и в медицине. Так, в нашей стране для лечения сердечно-сосудистых заболеваний разработан препарат иммобилизованной стрептокиназы препарат получил название «стрептодеказа». Этот препарат можно вводить в сосуды для растворения образовавшихся в них тромбов. Растворимая в воде полисахаридная матрица к классу полисахаридов относятся, как известно, крахмал и целлюлоза, близким к ним по строению был и подобранный полимерный носитель , к которой химически «привязана» стрептокиназа, значительно повышает устойчивость фермента, снижает его токсичность и аллергическое действие и не влияет на активность, способность фермента растворять тромбы. Слайд 16 Субстраты для получения белка одноклеточных для разных классов микроорганизмов. Слайд 17 Слайд 18 Плазмиды Наибольшие успехи были достигнуты в области изменения генетического аппарата бактерий.

Зимняя школа «Современная биология и Биотехнологии будущего»: передружить всех между собой!

Повышенная токсичность, аллергенность и канцерогенность ГМО также не доказаны, то есть риск отравления и аллергии при употреблении таких продуктов совершенно такой же, как и при употреблении продуктов с пометкой «без ГМО». Что, разумеется, вовсе не отменяет контроля качества. Более того, исследования показывают значительно большую урожайность генномодифицированных сельскохозяйственных культур по сравнению с обычными. Такие культуры требуют в среднем значительно меньшей обработки пестицидами, поскольку могут быть значительно более устойчивы к вредителям. А это сказывается, в том числе, и на стоимости конечного продукта. Ну и, наконец, нельзя забывать о знаменитом золотом рисе. Он был специально модифицирован, чтобы содержать большое количество ретинола — провитамина А. Позже были созданы культуры, обогащенные другими полезными веществами: ресвератролом, витамином С, фолатами и прочими. ГМО-продукты способны решить проблемы, связанные с количеством и качеством продовольствия в мире. Вот почему их можно считать настоящим прорывом биотехнологической науки.

Заявлены как очные выступления учёных, так и постерная сессия. Организовано дистанционное участие молодых ученых из нашего университета. В рамках конференции проходило заседание Федерального УМО в системе высшего образования по укрупненной группе специальностей и направлений подготовки 19. Партнёрами научно-практической конференции выступают: Российский химико-технологический университет им.

Слайд 8 В начале XX века активно развивалась бродильная и микробиологическая промышленность. В эти же годы были предприняты первые попытки наладить производство антибиотиков, пищевых концентратов, полученных из дрожжей, осуществить контроль ферментации продуктов растительного и животного происхождения. Слайд 9 Первый антибиотик — пенициллин пенициллин— удалось выделить и очистить до приемлемого уровня в 1940 году, что дало новые задачи: поиск и налаживание промышленного производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня биобезопасности новых лекарственных препаратов.

Флеминг Слайд 10 Биоинженерия или биомедицинская инженерия это дисциплина, направленная на углубление знаний в области инженерии, биологии и медицины и укрепление здоровья человечества за счёт междисциплинарных разработок, которые объединяют в себе инженерные подходы с достижениями биомедицинской науки и клинической практики. Биоинженеры работают на благо человечества, имеют дело с живыми системами и применяют передовые технологии для решения медицинских проблем. Специалисты по биомедицинской инженерии могут участвовать в создании приборов и оборудования, в разработке новых процедур на основе междисциплинарных знаний, в исследованиях, направленных на получение новой информации для решения новых задач. Слайд 11 Важные достижения биоинженерии Среди важных можно упомянуть разработку искусственных суставов, магниторезонансной томографии, кардиостимуляторов, артроскопии, ангиопластики, биоинженерных протезов кожи, почечного диализа, аппаратов искусственного кровообращения. Слайд 12 Также одним из основных направлений биоинженерных исследований является применение методов компьютерного моделирования для создания белков с новыми свойствами, а также моделирования взаимодействия различных соединений с клеточными рецепторами в целях разработки новых фармацевтических препаратов Раздел медицины, изучающий с теоретических позиций организм человека, его строение и функцию в норме и патологии, патологические состояния, методы их диагностики, коррекции и лечения. Слайд 14 Наномедицина Слежение, исправление, конструирование и контроль над биологическими системами человека на молекулярном уровне, используя наноустройства и наноструктуры.

Клонирование растений также не представляет значительной трудности, поскольку клетки растений тотипотентны, т. Массовое клонирование животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных Массовое клонирование животных долгое время сталкивалось с таким существенным препятствием, как отсутствие способности к бесполому размножению у высших животных. Однако в 1997 году эта проблема была разрешена с получением первого клонированного организма — овцы Долли.

Для клонирования были взяты клетки молочной железы ее генетической матери, а также яйцеклетки суррогатной матери. Ядра яйцеклеток удалялись, а на их место вводились ядра клеток молочной железы. После стимуляции развития зиготы электрическим током делящийся зародыш короткий промежуток времени культивировали на питательной среде, а затем вводили в матку суррогатной матери. Из пяти пересаженных эмбрионов выжил лишь один. Овечка Долли 5. Овца Долли являлась генетической копией овцы-донора клетки. В настоящее время клонирован уже целый ряд видов животных — мыши, собаки, коровы и др В настоящее время клонирован уже целый ряд видов животных — мыши, собаки, коровы и др. Заманчивые перспективы перед человечеством раскрываются в области терапевтического клонирования — воспроизведения отдельных органов. Так, в настоящее время широко используются клонированная кожа, клетки соединительной ткани и другие части организма.

Американские ученые клонировали ухо знаменитого голландского художника Винсента Ван Гога, мочку которого он себе отрезал при жизни. Роль клеточной теории в становлении и развитии биотехнологии Роль клеточной теории в становлении и развитии биотехнологии Создание клеточной теории позволило связать наследственность и изменчивость с их материальной основой — ДНК, а также определить, что клетка является элементарной единицей живых организмов. Уже в середине ХХ века были получены первые растения, выращенные из отдельных клеток на питательной среде, а в 1973 году родился первый «ребенок из пробирки». Операции с клетками генная и клеточная инженерии позволили клонировать сначала холоднокровных животных, а затем и млекопитающих.

Похожие новости:

Оцените статью
Добавить комментарий