Новости почему поверхностное натяжение зависит от рода жидкости

Поверхностное натяжение жидкости является причиной появления капиллярного эффекта. 6 ответов на вопрос “Почему поверхностное натяжение зависит от рода жидкости?”. Поверхностное натяжение различных жидкостей неодинаково, оно зависит от их мольного объёма, полярности молекул, способности молекул к образованию водородной связи между собой и др. Важно понимать, что поверхностное натяжение зависит от рода жидкости и может быть сильным или слабым в зависимости от типа взаимодействия между молекулами. Сила поверхности натяжения зависит от плотности жидкости. (следовательно и от рода жидкости).

Поверхностное натяжение и его зависимость от температуры и рода жидкости

Вода имеет необычно высокая температура кипения для жидкости. Эти сильные межмолекулярные силы заставляют молекулы воды «прилипать» друг к другу и препятствовать переходу в газообразную фазу. Почему вода имеет высокую температуру кипения и плавления? Высокая температура кипения и низкая температура плавления. Вода имеет прочные водородные связи между молекулами. Эти связи требуют много энергии, прежде чем они разорвутся. Это приводит к тому, что вода имеет более высокую температуру кипения, чем если бы были только более слабые диполь-дипольные силы. Что вызывает высокое поверхностное натяжение, низкое давление пара и высокую температуру кипения воды quizlet? Водородная связь создает слегка положительная сторона и слегка отрицательная сторона, которая позволяет воде легко слипаться. Это то, что создает воду с высокой температурой кипения, низким давлением пара и высоким поверхностным натяжением. Почему вода имеет более высокое поверхностное натяжение, чем этанол?

Вода имеет большую степень водородных связей в объеме жидкости. Следовательно, поскольку молекулы воды на поверхности жидкости труднее протолкнуть вниз, поверхностное натяжение воды выше, чем у этилового спирта. Имеет ли вода большее поверхностное натяжение, чем глицерин? По сути, я сравнил вязкость и поверхностное натяжение воды и глицерина с помощью серии тестов и был весьма удивлен тем, что обнаружил. Согласно моим результатам и датабукам, когда я проверял , вода имеет более высокое поверхностное натяжение, чем глицерин, но глицерин более вязкий, чем вода. Что имеет более высокое поверхностное натяжение глицерин или вода? Силы, лежащие в основе возникновения поверхностного натяжения, — это силы сцепления и силы сцепления. Итак, среди предложенных вариантов Глицерин в воде имеет самое высокое поверхностное натяжение, потому что глицерин имеет больше водородных связей, образованных на молекулу. Как работает поверхностное натяжение воды? Поверхностное натяжение в воде связано с тем, что молекулы воды притягиваются друг к другу, так как каждая молекула образует связь с соседними.

Смотрите также какой состав у каменной соли Какая из следующих жидкостей, вероятно, будет иметь наибольшее поверхностное натяжение? Поскольку водородная связь сильнее, чем диполь-дипольные силы и дисперсионные силы Лондона, молекулы, удерживаемые водородной связью, будут больше притягиваться друг к другу. Это приводит к высокому поверхностному натяжению. Какие факторы влияют на поверхностное натяжение?

Некоторые вещества могут увеличивать поверхностное натяжение, а другие — уменьшать его. Например, добавление моющего средства к воде может снизить ее поверхностное натяжение, что позволяет легче смывать грязь и жир. Давление Давление также может влиять на поверхностное натяжение. Обычно поверхностное натяжение уменьшается с увеличением давления. Это связано с тем, что при повышенном давлении молекулы жидкости сжимаются и более плотно упаковываются, что снижает силы, вызывающие поверхностное натяжение. Все эти факторы взаимодействуют и влияют на поверхностное натяжение жидкости. Понимание этих факторов позволяет лучше понять свойства и поведение жидкостей на поверхности и применять эту информацию в различных областях, таких как химия, физика и биология. Поверхностное натяжение и форма жидкости Поверхностное натяжение жидкости играет важную роль в определении ее формы. Оно обусловлено силами, действующими между молекулами жидкости на ее поверхности. Поверхностное натяжение стремится уменьшить площадь поверхности жидкости, что приводит к образованию сферической формы. Сферическая форма капли Капля жидкости, находящаяся в свободном состоянии, принимает сферическую форму. Это происходит из-за поверхностного натяжения, которое стремится уменьшить площадь поверхности капли до минимума. Сферическая форма обеспечивает наименьшую площадь поверхности для заданного объема жидкости. Сферическая форма капли также объясняет, почему капли воды на поверхности не расплываются, а образуют шарики. Поверхностное натяжение делает поверхность капли похожей на эластичную пленку, которая позволяет капле сохранять свою форму. Влияние поверхностного натяжения на форму жидкости Поверхностное натяжение также влияет на форму жидкости, находящейся в контейнере или на поверхности.

Из теории я узнал, что молекулы воды испытывают силы взаимного притяжения. Именно благодаря этому жидкость моментально не улетучивается. На молекулы внутри воды силы притяжения других молекул действуют со всех сторон, а молекулы на поверхности воды не имеют соседей снаружи, и их сила притяжения направлена внутрь жидкости. В итоге вся поверхность воды стремится стянуться под воздействием этих сил. Поверхностный слой находится в натяжении, которое называется поверхностным. Благодаря этому натяжению поверхность жидкости ведет себя подобно упругой пленке. Для того, чтобы разорвать поверхность воды, требуется усилие, причем, как это ни странно, довольно значительное. Я решил определить существование поверхностного натяжения с помощью опытов. Водяная горка. Я взял стакан, наполнил его водой до краев и стал добавлять воду пипеткой по капельке. В процессе я понял, что эта процедура занимает много времени. Вода не скоро начнет выливаться из стакана. Поверхность воды приподнялась над краями стакана и ведет себя так, будто ее удерживает эластичная пленка. С увеличением объема жидкости пленка «растягивается», и образуется водяная «горка». Это явление в физике называется поверхностным натяжением. Нетонущая скрепка. В этом опыте нам понадобятся стакан с водой и скрепка. Я поместил скрепку в центре небольшого бумажного квадратика и аккуратно опустил его на поверхность воды.

Между жидкостью и газом, возможно паром, возникает граница раздела, находящаяся в особых условиях по сравнению с остальной массой жидкости. В отличие от молекул в глубине жидкости, молекулы, располагающиеся в пограничном ее слое, окружены другими молекулами этой же жидкости не со всех сторон. В среднем воздействующие на одну из молекул внутри жидкости со стороны соседних молекул силы межмолекулярного взаимодействия взаимно скомпенсированы. Каждая отдельно взятая молекула в пограничном слое притягивается находящимися внутри жидкости молекулами.

§ 8-1. Поверхностное натяжение

Он зависит от ряда факторов, включая род жидкости, наличие примесей и температуру жидкости. Зависимость от рода жидкости Коэффициент поверхностного натяжения зависит от рода жидкости в силу межмолекулярных взаимодействий. Каждая жидкость имеет свое молекулярное строение и характерные химические свойства, которые определяют ее поведение на границе с другой фазой. Это влияет на силу взаимодействия между молекулами и, следовательно, на величину коэффициента поверхностного натяжения. Например, молекулы воды образуют водородные связи, что приводит к высокому коэффициенту поверхностного натяжения, а углеводороды обычно имеют низкий коэффициент поверхностного натяжения. Зависимость от наличия примесей Наличие примесей в жидкости может также влиять на величину коэффициента поверхностного натяжения.

Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие стягивающие эту поверхность.

Обычно с увеличением температуры коэффициент поверхностного натяжения у жидкостей снижается. Это связано с увеличением средней кинетической энергии молекул и усилением их движения. Более активные молекулы могут преодолеть силы межмолекулярного взаимодействия и слабее притягиваться друг к другу. В результате, сила на единицу длины на поверхности жидкости уменьшается, что приводит к снижению коэффициента поверхностного натяжения. Выводы Коэффициент поверхностного натяжения зависит от ряда факторов, включая род жидкости, наличие примесей и температуру. Знание этих зависимостей позволяет не только более глубоко понять поведение жидкостей на границе раздела фаз, но и применять их в реальной жизни.

Различные жидкости имеют разные типы молекулярных взаимодействий между собой и с окружающей средой, таких как ван-дер-ваальсовы силы, диполь-дипольное взаимодействие и водородные связи.

Эти силы определяют, насколько тесно молекулы жидкости связаны между собой на поверхности, что влияет на её поверхностное натяжение. Поверхностное натяжение Свойства поверхностного слоя жидкости.

Поверхностное натяжение: основы и связь с температурой и родом жидкости

  • Вода с низким поверхностным натяжением
  • Оглавление
  • Почему поверхностное натяжение зависит от рода жидкости
  • Новые вопросы
  • Урок 21. Лабораторная работа № 05. Измерение поверхностного натяжения жидкости (отчет)

ПОЧЕМУ ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ ЗАВИСИТ ОТ РОДА ЖИДКОСТИ

1. Почему коэффициент поверхностного натяжения жидкостей зависит от рода жидкости?2. Чому Почему поверхностное натяжение жидкости зависит от рода жидкости?
Почему и как зависит поверхностное натяжение от температуры и рода жидкости ма») называется коэффициентом поверхностного натяжения и зависит от природы соприкасающихся сред и от их состояния.

Поверхностное натяжение и его зависимость от температуры и рода жидкости

Рассмотрим чистые жидкости, например воду. Поверхностный слой жидкости по физико-химическим свойствам отличается от ее внутренних слоев. На каждую молекулу внутри жидкости равномерно действуют силы притяжения со стороны окружающих молекул, поэтому силовое поле каждой молекулы внутри жидкости симметрично насыщено рис. Схема взаимодействия молекул поверхностного и глубинного слоев жидкости с окружающими молекулами Равнодействующая этих сил равна нулю, поэтому для перемещения молекулы внутри жидкости не требуется затрачивать работу. Для молекулы, находящейся на поверхности жидкости, силы молекулярного сцепления не будут скомпенсированы, поскольку молекула испытывает притяжение только со стороны молекул жидкости, которое не компенсируется со стороны газообразной фазы. В результате равнодействующая молекулярных сил не равна нулю и направлена внутрь жидкой фазы, стремясь затянуть молекулы с поверхности внутрь жидкости. По этой причине поверхность любой жидкости стремится к сокращению. Падающая капля жидкости имеет форму шара, при которой ее поверхность наименьшая. Наличие на поверхности жидкости молекул, неуравновешенных межмолекулярными силами, создает в поверхностном слое свободную поверхностную энергию, стремящуюся уменьшиться. То есть, на поверхности жидкости как бы образуется пленка, обладающая поверхностным натяжением. Поэтому, чтобы увеличить поверхность раздела, то есть преодолеть поверхностное натяжение, необходимо затратить работу против сил молекулярного сцепления.

Реальное ускорение свободного падения на поверхности Земли зависит от широты, времени суток и других факторов. Изменится ли результат вычисления, если диаметр капель трубки будет меньше? Изменение диаметра трубки не может приводить к изменению измеряемой величины. Для определения поверхностного натяжения используется формула.

По рисунку видно, что уменьшение диаметра трубки компенсируется уменьшением массы капли, а поверхностное натяжение, естественно, останется тем же. Почему следует добиваться медленного падения капель? При вытекании жидкости из капиллярной трубки размер капли растет постепенно.

Следовательно, коэффициент поверхностного натяжения возможно также определить, как основной модуль силы поверхностного натяжения, который в общем действует на единицу длины начального контура, ограничивающего свободную среду жидкости. Наличие указанных параметров делает поверхность жидкого вещества похожей на растянутую упругую пленку, с единственной разницей, что неизменные силы в пленке непосредственно зависят от площади ее системы, а сами силы поверхностного натяжения способны самостоятельно работать. Если положить небольшую швейную иглу на поверхность воды, гладь прогнется и не даст ей утонуть.

Действием внешнего фактора можно описать скольжение легких насекомых таких, как водомерки, по всей поверхности водоемов. Лапка этих членистоногих деформирует водную поверхность, тем самым увеличивая ее площадь. В результате этого возникает сила поверхностного натяжения, стремящаяся уменьшить подобное изменение площади. Равнодействующая сила будет всегда направлена исключительно вверх, компенсируя при этом действие тяжести. Результат действия поверхностного натяжения Под воздействием поверхностного натяжения небольшие количества жидких сред стремятся принять шарообразную форму, которая будет идеально соответствовать наименьшей величине окружающей среды. Приближение к шаровой конфигурации достигается тем больше, чем слабее начальные силы тяжести, так как у малых капель показатель силы поверхностного натяжения гораздо превосходит влияние тяжести.

Волосы также увеличивают площадь поверхности водяных струй, что означает, что на поверхность воды воздействует меньшее усилие. Это ошеломляющее сочетание тонкой силы и идеальной адаптации. Однако, что наиболее важно, и то, что мало кто осознает, поверхностное натяжение позволяет вещам плавать, от листьев и семян до молекул и белков. Когда вы опускаетесь до микроскопического масштаба, поверхность любого водоема очень жива и поддерживается поверхностным натяжением молекул воды. Наши экосистемы не смогут выжить или даже развиваться без воздействия поверхностного натяжения, а сам состав воды будет менее стабильным, постоянно поступая и выходя из газообразного состояния. Поверхностное натяжение - это одна из тех деталей научного мира, которые, возможно, трудно осмыслить или оценить в вашей повседневной жизни, но на самом деле она лежит в основе всей жизни, как мы ее знаем. Поверхностное натяжение позволяет экосистемам процветать, оно позволяет семенам и молекулам плавать, и управляет большей частью жизни, хотя большинство людей не замечают этого. Это также дает интригующее напоминание о том, насколько сложна и замечательна каждая капля воды.

Почему вода имеет поверхностное натяжение?

  • Поверхностное натяжение: основы и связь с температурой и родом жидкости
  • Почему поверхностное натяжение зависит от рода воды?
  • Почему и как зависит поверхностное натяжение от температуры и рода жидкости
  • Почему зависит поверхностное натяжение от рода жидкости
  • Дистилляция

Поверхностное натяжение

Коэффициент поверхностного натяжения измеряется в Н/м. Величина σ зависит от рода жидкости, температуры, наличия при-месей. Например, из-за сил поверхностного натяжения формируется капля, лужица, струя и т.д. Летучесть (испаряемость) жидкости тоже зависит от сил сцепления молекул. 1. Почему коэффициент поверхностного натяжения жидкостей зависит от рода жидкости? Поверхностное натяжение это физическая величина, равная отношению силы поверхностного натяжения F, приложенной к границе поверхностного слоя жидкости и направленной по касательной к поверхности, к длине L этой границы.

Поверхностные явления

Найди верный ответ на вопрос почему поверхностное натяжение зависит от рода жидкости по предмету Физика, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов. Поверхностное натяжение воды и других жидкостей зависит от рода жидкости из-за различий в их межмолекулярных силах. Для чистых жидкостей поверхностное натяжение зависит от природы жидкости и температуры, а для растворов – от природы растворителя, природы и концентрации растворенного вещества.

Поверхностное натяжение жидкости

§ 8-1. Поверхностное натяжение Таким образом, можно сделать вывод, что поверхностное натяжение зависит от рода жидкости и ее химических свойств.
почему поверхностное натяжение зависит от рода жидкости | Дзен Главная» Новости» Почему поверхностное натяжение зависит от рода жидкости.

Остались вопросы?

Почему поверхностное натяжение зависит от рода жидкости? | Сайт вопросов и ответов Коэффициент поверхностного натяжения измеряется в Н/м. Величина σ зависит от рода жидкости, температуры, наличия при-месей.
SA. Поверхностное натяжение — PhysBook Потому что поверхностное натяжение зависит от межмолекулярных взаимодействий жидкости, а оно у всех жидкостей отличается.
Форум самогонщиков, пивоваров, виноделов Поверхностное натяжение и температура Поверхностное натяжение жидкости зависит от различных факторов, включая род жидкости и температуру.
Поверхностное натяжение: чем вызвано, коэффициент, определение по формуле Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью.
Как можно объяснить поверхностное натяжение жидкостей? Значение коэффициента поверхностного натяжения зависит от вида жидкости и ее температуры, то есть с увеличением температуры жидкости коэффициент его поверхностного натяжения уменьшается и при критической температуре равен нулю.

Поверхностное натяжение и его зависимость от температуры и рода жидкости

В итоге, поверхностное натяжение жидкости связано с ее молекулярной структурой и взаимодействием между молекулами. Различия в этих структурах и силах приводят к разным значениям поверхностного натяжения в разных жидкостях. Атомная, молекулярная и деликтная теории поверхностного натяжения Атомная теория: Атомная теория поверхностного натяжения основывается на предположении о том, что поверхностное натяжение связано с взаимодействием атомов на поверхности жидкости. Атомы в жидкости находятся в постоянном движении, их положение на поверхности изменяется со временем. Это движение создает натяжение на поверхности жидкости. Атомы соединяются в молекулы, и структура поверхности определяется химическим составом жидкости. Молекулярная теория: Молекулярная теория поверхностного натяжения основывается на предположении о существовании молекулярно-кинетической энергии. Молекулы в жидкости движутся случайным образом и сталкиваются между собой.

Молекулярные силы притяжения и отталкивания между молекулами влияют на поверхностное натяжение. Благодаря этим силам, молекулы на поверхности жидкости организовываются в компактный слой и создают натяжение. Деликтная теория: Деликтная теория поверхностного натяжения основывается на предположении о существовании внутренних деликтных сил внутри жидкости. Известно, что жидкость состоит из молекул, связанных друг с другом. Делектные силы между этими молекулами создают сопротивление изменениям формы жидкости. Деликтные силы направлены внутрь жидкости и противодействуют деформации. Именно эти силы порождают поверхностное натяжение на границе раздела между жидкостью и воздухом.

Роль водородных связей в поверхностном натяжении Водородные связи представляют собой электростатическое взаимодействие между атомами водорода, связанными с электроотрицательными атомами, такими как кислород, азот или фтор. В жидкостях, обладающих возможностью образовывать водородные связи, молекулы образуют сеть связей между собой, что приводит к более высокому поверхностному натяжению. Водородные связи имеют свойства притягивать другие молекулы ко всему будучи притянутыми молекулярному возвышению, что способствует укреплению поверхности жидкости. Это объясняет, почему жидкости, такие как вода и многие органические соединения, обычно имеют более высокое поверхностное натяжение, потому что они образуют больше водородных связей в сравнении с другими жидкостями. Более сильные взаимодействия водородных связей между молекулами создают более прочную поверхность, что приводит к более высоким значениям поверхностного натяжения. На практике это проявляется в способности жидкостей с высоким поверхностным натяжением образовывать капли сферической формы, так как энергия поверхности молекул жидкости минимизируется при минимальном контакте с внешней средой.

Взаимодействия между молекулами таких жидкостей менее сильны, что приводит к более низкому поверхностному натяжению. Это проявляется в виде менее стабильной пленки на поверхности неполярной жидкости.

Роль межмолекулярных взаимодействий в поверхностном натяжении Межмолекулярные взаимодействия играют важную роль в формировании поверхностного натяжения. Эти взаимодействия могут быть различными в зависимости от рода жидкости — молекулярных веществ, которые составляют данную жидкость. Вода, например, обладает высоким поверхностным натяжением благодаря сильным водородным связям между молекулами. Когда вода находится в контакте с воздухом, возникает напряженная плотная пленка на ее поверхности, которая имеет свойство сокращаться. При наличии слабых межмолекулярных взаимодействий на поверхности жидкости образуется слабая плёнка и, следовательно, меньшее поверхностное натяжение. В то же время, сильные межмолекулярные связи приводят к образованию более плотной пленки и большему поверхностному натяжению. Знание роли межмолекулярных взаимодействий в поверхностном натяжении позволяет улучшить понимание физико-химических явлений в природе и создать инновационные материалы с желаемыми свойствами. Изучение и изменение межмолекулярных взаимодействий могут привести к разработке новых жидкостей с оптимальными поверхностными свойствами для конкретных приложений, таких как промышленность, медицина и наука.

Эффект температуры на поверхностное натяжение разных родов жидкостей Влияние температуры на поверхностное натяжение может быть разным для разных родов жидкостей.

Это приводит к тому, что площадь свободной поверхности стремится принять минимальное значение. Проанализируйте зависимость поверхностного натяжения данной жидкости от температуры, используя таблицу с. Как будет изменяться высота подъема жидкости в капиллярной трубке при изменении температуры жидкости?

Поверхностное натяжение возникает из-за сил взаимодействия молекул внутри жидкости и на ее поверхности. Молекулы вещества в жидкости притягиваются друг к другу силами взаимодействия, называемыми межмолекулярными силами. Водородные связи, дисперсионные силы и диполь-дипольные взаимодействия являются примерами таких сил.

Почему поверхностное натяжение зависит от вида жидкости

Можно привести много примеров сил поверхностного натяжения в действии из нашей будничной жизни. Под воздействием ветра на поверхности океанов, морей и озер образуется рябь, и эта рябь представляет собой волны, в которых действующая вверх сила внутреннего давления воды уравновешивается действующей вниз силой поверхностного натяжения. Две эти силы чередуются, и на воде образуется рябь, подобно тому как за счет попеременного растяжения и сжатия образуется волна в струне музыкального инструмента. Будет жидкость собираться в «бусинки» или ровным слоем растекаться по твердой поверхности, зависит от соотношения сил межмолекулярного взаимодействия в жидкости, вызывающих поверхностное натяжение, и сил притяжения между молекулами жидкости и твердой поверхностью. В жидкой воде, например, силы поверхностного натяжения обусловлены водородными связями между молекулами см. Химические связи. Поверхность стекла водой смачивается, поскольку в стекле содержится достаточно много атомов кислорода, и вода легко образует гидрогенные связи не только с другими молекулами воды, но и с атомами кислорода.

Крайне рекомендую к повторению! Цветку лучше оставить короткую ножку, поскольку так эффект проявляется быстрее. Смачивание и не смачивание Есть в физике поверхностного натяжения жидкостей такие понятия как смачивание и не смачивание. Если говорить простыми словами, то степень смачивания определяет то, как жидкость взаимодействует с той или иной поверхностью.

В случае полного не смачивания жидкость останется практически идеальной сферой как мы ранее видели с ртутью и золотом. В случае полного смачивания жидкость полностью растечется по поверхности. Поясняющую картинку прилагаю. A - полное не смачивание S - полное смачивание Если силы межмолекулярного притяжения между молекулами жидкости больше, чем между жидкостью и поверхностью, то мы наблюдаем не смачивание.

Так ведет себя ртуть на стекле. Если силы межмолекулярного притяжения между молекулами жидкости меньше, чем между жидкостью и поверхностью, то мы наблюдаем смачивание. Так ведет себя вода на стекле. Посмотрим же на смачивание и не смачивание в эксперименте.

Капля воды на парафине не смачивание. Капля воды на стекле смачивание. Капля ртути не смачивание. И есть еще один волшебный опыт от Павла Андреевича.

Если закоптить некоторую поверхность, а после капнуть на нее аккуратно водичкой, то капля воды будет вести себя как при полном не смачивании практически. Очень симпатишно!

Эти силы называются силами поверхностного натяжения. Сила поверхности натяжения зависит от плотности жидкости.

Вода является ярким примером полярной жидкости: у нее есть частично положительно заряженный водород и частично отрицательно заряженный кислород. Это приводит к возникновению внутренних электрических сил, которые удерживают молекулы воды вместе и создают поверхностное натяжение. Полярные жидкости образуют сильные водородные связи между молекулами на поверхности, что делает их поверхность более устойчивой и способной выдерживать внешние воздействия. Этот факт объясняет, почему вода образует выпуклую форму на поверхности и почему насекомые могут ходить по воде благодаря поверхностному натяжению. С другой стороны, неполярные жидкости, такие как масло или бензин, не обладают дипольным моментом и не образуют сильных водородных связей между молекулами. Из-за этого их поверхностное натяжение будет меньше, чем у полярных жидкостей. Капли неполярных жидкостей имеют выпуклую форму на поверхности и не могут выдерживать внешние воздействия с такой же эффективностью, как водные капли. Полярные жидкости.

Что такое поверхностное натяжение?

тем большая сила поверхносного натяжения. Поверхностное натяжение различных жидкостей неодинаково, оно зависит от их мольного объёма, полярности молекул, способности молекул к образованию водородной связи между собой и др. Почему у воды поверхностное натяжение больше, чем у других жидкостей? Поскольку поверхностное натяжение определяется на молекулярном уровне, любое изменение компонентов жидкости, поверхностно-активных веществ, топлива или соединений в жидкости может привести к изменению поверхностного натяжения. Поверхностное натяжение воды и других жидкостей зависит от рода жидкости из-за различий в их межмолекулярных силах.

Похожие новости:

Оцените статью
Добавить комментарий