Новости новости квантовой физики

В этом видео представлена инновационная разработка в области эволюционной науки, которая предлагает новый взгляд на природу нашей Вселенной. Эта гипотеза нав. Квантовая физика (рассказывает физик Дмитрий Бочаров и др.) Новости дня от, интервью, репортажи, фото и видео, новости Москвы и регионов России, новости экономики, погода.

Квантовые технологии изменят мир. Новости квантовых компаний.

Новости науки и техники/. Новости, анонсы, рекомендации. Бытовая техника. Представьте, что отпраздновать Всемирный день квантовой науки собрались все великие ученые, которые приложили руку к созданию квантовой физики. Китайские физики объявили о доказательствах существования новой субатомной частицы, обнаруженной при распаде (J/psi)-мезона на пару положительных и отрицательных пионов.

Квантовая физика о Боге, душе и Вселенной

Приглашаем на ЛСОП-2024: Участников заключительного этапа, победителей и призеров регионального этапа ВсОШ по математике, физике, химии, биологии, информатике и астрономии; Победителей и призеров заключительного этапа олимпиад из перечня РСОШ по тем же предметам; Победителей и призеров заключительного этапа Всесибирской открытой олимпиады школьников. Не призер, а поступить хочу. Что делать? Приехать в Летнюю школу. Она пройдет с 1 по 23 августа.

Но его развитие чревато двумя потенциальными угрозами, и они совершенно разные. Первая из них совершенно конкретна и непосредственно угрожает жизни отдельных людей: дроны, способные распознавать черты лица и намеренно или случайно убивать кого угодно и когда угодно. Таким образом, у нас появится автоматическая машина для убийства. Машина, которая сможет летать, которая сможет наблюдать за местностью, идентифицировать конкретного человека и убить его, например, устроив какую-нибудь аварию. Сюда же можно отнести и войны, то есть преднамеренную попытку одной страны убить солдат страны-противника. И это произойдет в течение нескольких ближайших лет. Но вторая угроза более серьезна и носит более долгосрочный характер. Она наступит тогда, когда у нас появится искусственный интеллект, приближающийся к интеллекту человека. Правда, до этого еще далеко. Но рано или поздно наши роботы сравняются в интеллекте с мышами. Потом они станут такими же умными, как кролики. Затем наступит очередь собак и кошек, а под конец их мыслительные способности сравняются со способностями обезьян. В этот момент они и станут потенциально опасными, потому что обезьяны понимают разницу между обезьяной и человеком. Вот я и думаю, что вполне возможно, что через 100 лет у нас появятся роботы, практически неотличимые от людей. К этому моменту мы должны сделать все возможное, чтобы у них не появилось собственное мнение и чтобы они ни в коем случае и помыслить не могли на нас напасть. Мы должны будем вставить в их мозг чип, который бы их отключал, если у них только возникнут мысли об убийстве. Но я думаю, что до этого еще далеко и что в запасе у человечества еще масса времени, прежде чем искусственный интеллект достигнет подобного уровня. Непосредственную опасность представляют дроны, которые могут убивать без разбора кого угодно и где угодно. Джо Байдену показывают квантовый компьютер. Квантовые компьютеры действительно могут сделать довольно много. Я думаю, что в конечном итоге они смогут решить проблему старения, и люди перестанут умирать от старости. Проблему старости мы теоретически можем решить, но я сомневаюсь, что квантовые компьютеры могут спасти человечество от межличностных проблем, которые возникают в процессе общения. Эти процессы очень сложны еще и потому, что идут на фоне социальных взаимодействий. В любом случае нам надо найти какой-то путь, чтобы объединить людей, побудить их жить в мире вместо того, чтобы постоянно вести войны. Би-би-си: Какие проблемы квантовая эра решить не сможет? Я считаю, что они помогут решить проблему глобального потепления. Они способны дать нам термоядерные электростанции, которые не вырабатывают ядерных отходов. Они создадут новые лекарства от таких болезней, как рак, болезнь Альцгеймера или синдром Паркинсона, они, безусловно, станут источником повышения благосостояния общества. Но есть одна вещь, которая на данный момент квантовым компьютерам не по зубам: искоренение таких человеческих слабостей, как желание вести войны или зависть. Эволюция дала нам возможность сражаться, дала нам способность защищать то, что нам принадлежит.

И эта система раздвигает границы квантовой механики. Облако атомов барабанит по мембране при помощи испускаемых фотонов, а физики "слышат" этот звук. Фото с сайта nbi. Чтобы понять, чем важно это достижение, вспомним, что два квантово запутанных объекта "чувствуют" друг друга, несмотря на километры между ними. Если изменяется состояние одного, то меняется состояние и другого. Они словно бы синхронизированы, хотя между ними нет никакой физической связи. Также стоит вспомнить, что любой объект во Вселенной как бы немного вибрирует. Это движение не останавливается даже при абсолютном нуле температуры происходят так называемые нулевые колебания. И это явление ограничивает представление о любой из систем, которую физики пытаются изучить физики называют это принципом неопределённости.

Ведь когда только один из двух запутанных объектов будет подвергаться внешнему воздействию, запутанность позволит измерить нужные свойства второго объекта с невероятной по современным меркам чувствительностью, не ограниченной нулевыми колебаниями. Это как заглянуть в удивительный квантовый мир с помощью микроскопа. Если представить, сколько всего нового и важного учёные узнали с его помощью о мире бактерий и клеток, то голова просто взрывается от мыслей, как много нового мы узнаем при помощи квантового зондирования. Достижение открывает новые фантастические технические возможности. А ещё новое достижение потенциально позволяет увеличить и без того фантастическую чувствительность детекторов гравитационных волн. Эти волны можно наблюдать, потому что они сотрясают зеркала интерферометра. Но даже чувствительность LIGO ограничена квантовой механикой, потому что зеркала лазерного интерферометра также подвергаются нулевым колебаниям. Эти колебания приводят к шуму, мешающему наблюдать крошечное движение зеркал, вызванное гравитационными волнами. Теперь, думаю, понятно, почему такого рода достижения - это важный шаг к безграничной точности измерений.

О связи Канта с современной квантовой физикой рассказали в БФУ

В этом исследовании — из сверхпроводящих цепей, охлаждаемых до температур в 100 раз ниже, чем температура открытого космоса. Каждый кубит может представлять единицу, ноль, или, как ни странно, и единицу, и ноль одновременно. Этот «квантовый параллелизм» позволяет квантовым компьютерам выполнять вычисления на несколько порядков быстрее, чем способны классические суперкомпьютеры. Однако квантовые системы хрупки. Эффективную работу квантовых компьютеров останавливает явление декогеренции — информация, хранящаяся в кубитах, быстро теряет свои свойства в результате взаимодействия с окружающей средой. Квантовые вычисления идут с помощью частиц. Однако из частиц состоят не только кубиты, но и все вокруг, включая материалы, из которых сделан компьютер, воздух и пр.

В теории относительности такой зависимости нет. Законы причины и следствия не работают в квантовой физике, и это тоже противоречит учению Канта. Многие воспринимают квантовую физику как некий мистический мир. По этой причине даже появился парадокс Эйнштейна-Подольского-Розена, указывающий на неполноту квантовой механики. Если продолжать разговор об объекте и наблюдателе в разрезе изучения космоса, то, следуя «Критике чистого разума» Канта, можно сделать вывод, что вселенная смотрит на саму себя, — добавил доктор Штайн. Ведь Луна существует не только потому, что вы на нее смотрите.

Она будет существовать даже когда вас не станет, ведь на нее смотрит вся Вселенная. Единственный вопрос, кто должен быть окончательным наблюдателем — тем, кто непосредственно смотрит на объект? Пока для ученых это загадка. Иммануил Кант предполагал, что познание не может происходить в нас. Понимание абсолютно, независимо от того, что находится во вне.

Это очень важная веха для нашей области, так как реализация универсальных квантовых компьютеров без системы исправления ошибок невозможна из-за чрезвычайно высокой чувствительности квантовых систем к шумам», — заявил старший научный сотрудник МФТИ Глеб Федоров.

Он отметил, что особую ценность представляет то, что в 2023 году впервые сразу на нескольких платформах физикам удалось экспериментально продемонстрировать то, что увеличение числа физических кубитов, входящих в состав логических квантовых битов, действительно улучшает качество работы и стабильность этих ячеек памяти и элементарных вычислительных блоков квантового компьютера. Другим важным «квантовым» физическим прорывом года, как добавил директор Международного центра теоретической физики имени Абрикосова Москва Алексей Кавокин, было создание австрийскими физиками первого в мире квантового повторителя сигналов на базе ионов кальция. По его словам, эта разработка значительно приблизила мир к созданию всемирной сети квантовых коммуникаций и к разработке распределенных квантовых вычислительных систем, чьи компоненты удалены друг от друга на очень большие расстояния. Как полагают многие физики в мире, дальнейшее развитие квантовых компьютеров потребует создания систем, способных автоматически находить и корректировать случайные ошибки в их работе.

Заметим, что за 30 лет до публикации Ньютоном «Начал» 28-летний голландец Христиан Гюйгенс создал первые часы с маятником. Считается, что его колебания отражают меру искривления пространства-времени. С помощью маятника французский физик Жан Фуко, член Петербургской Академии наук, определил суточное вращение Земли и скорость света в воздухе 1850—1851. В 1918 году немецкий физик Макс Планк, бывший также членом Российской академии наук, получил Нобелевскую премию за формулирование идеи кванта, в том числе — кванта действия. Согласно Нильсу Бору, квант света, фотон, излучается электроном, который возвращается на свой исходный энергетический уровень в атоме.

Учеными сначала были созданы пьезочасы кварцевые , затем атомные и, наконец, лазерные, продолжительность импульса которых сократилась до аттосекунд 10—18 с. Это позволило резко повысить разрешение физических инструментов и точность получаемых в ходе опытов результатов. Две статьи, опубликованные в декабре сотрудниками Университетского колледжа Лондона в журналах Nature Communications и Physical Review, возможно, лягут в основу великого объединения квантовой физики и гравитации. И это соединит наконец-то эйнштейновское понимание «фактуры» пространства-времени и природы тяготения. В квантовых экспериментах сегодня используется изотоп углерода С-60, или фуллерен, молекула которого представляет собой полую сферу. В Лондоне его предложили заменить тяжелым атомом золота, плотность которого неизмеримо выше, поэтому и результат предлагаемого опыта может быть более точным. Авторы статей, в которых представлена постквантовая теория классической гравитации, надеются уловить ничтожно малые отклонения-флюктуации. Сначала, по их мнению, имеет смысл определить шкалу флюктуаций двух атомов золота, находящихся в суперпозиции связанных состояний. Затем с максимально возможной точностью измерить время нахождения атомов в суперпозиции.

Жуткие «пауки», разбросанные по городу инков на Марсе, видны на невероятных изображениях

  • Последние новости:
  • Любопытные новости квантовой физики - Эзопланета - Форум о магии
  • Российские учёные развивают технологии на основе квантовой физики вместо классической
  • Нобелевскую премию по физике присудили за квантовую запутанность

Восторг и ужас Вселенной: Как квантовая физика перевернула мир и почему она наводит жуть

Однако работы новых лауреатов так или иначе связаны с теоретическим и экспериментальным освоением того свойства квантовых систем, которое он кодирует. С английского его также переводят и как «квантовое запутывание» и «квантовая запутанность», но мне больше нравится первая версия. Так что начать нам придется с обсуждения тех физических сущностей, которые за этим эффектом кроются. Вообще-то представление о квантовой спутанности появилось без малого 90 лет назад, а в неявном виде оно возникло еще во второй половине 1920-х годов.

Однако в рабочий инструмент теоретической физики КС стало превращаться значительно позже, где-то в середине седьмого десятилетия прошлого века. И процесс этот поначалу был довольно медленным. Первые эксперименты, продемонстрировавшие реальность КС, были выполнены в 1970-е годы, а решающие — лишь в 80-е.

Сначала этим эффектом занималась лишь горстка ученых, пытавшихся лучше понять, что нового внесла квантовая механика в наши представления о физической реальности. В последнее время интерес к КС сильно возрос, поскольку она является физической основой разработки квантовых компьютеров и сетей квантовых коммуникаций. Сообщения о том, что физики-экспериментаторы изготовили спутанные состояния новых и новых конфигураций частиц, нередко попадают не только в научные журналы, но и в СМИ.

Как сказал бы полковник Скалозуб , чтобы понять КС, есть многие каналы. Можно дать формальное определение этого феномена оно не так уж и сложно и немедленно перейти к конкретным иллюстрациям. Однако такое изложение оставило бы за кадром поистине драматические события в истории физики, отмеченные именами ее величайших творцов.

Поэтому начнем действительно ab ovo, с середины тридцатых годов двадцатого столетия. ЭПР-парадокс Квантовая механика вошла в пору зрелости удивительно быстро. Ее возраст принято отсчитывать от публикаций основополагающих работ Вернера Гейзенберга и Эрвина Шрёдингера в 1925—26 годах.

Всего через десять лет новая теория превратилась в общепризнанную основу понимания явлений микро- и макромира в очень широком спектре областей от ядерной физики до теории твердого тела. К тому времени квантовая механика получила строгий математический формализм прежде всего благодаря гению Поля Дирака и была неоднократно подтверждена экспериментально. Теория столь уверенно двигалась от успеха к успеху, что практически все физики стали принимать ее как истину в последней инстанции.

Казалось, что эту уверенность подтверждает и строгий математический анализ. В 1932 году великий математик Иоганн в американской эмиграции Джон фон Нейман опубликовал фундаментальную монографию «Математические основы квантовой механики». В этой книге он сформулировал теорему, из которой, по его мнению, следовало, что любая адекватная теория элементарных процессов может давать только статистические предсказания.

По его словам, если бы детерминистская теория этих процессов оказалась возможной, квантовая механика должна была быть «объективно ложной», а никакие экспериментальные данные не позволяли сделать такой вывод. Эту теорему часто интерпретировали как доказательство невозможности теорий микромира, основанных на предположении, что присущее квантовой механике вероятностное описание реальности можно превратить в детерминистское. Для этого предполагалось ввести в теоретический аппарат физики дополнительные величины, описывающие поведение микрообъектов на более глубоком уровне, нежели квантовый.

Эти гипотетические величины получили название скрытых переменных, или скрытых параметров. Однако через несколько лет после публикации книги фон Неймана в этой теореме обнаружили довольно элементарную ошибку. Фон Нейман предполагал как аксиому, что среднее значение суммы операторов квантовой механики, которые соотносятся с физически наблюдаемыми динамическими величинами на языке математики такие операторы называются самосопряженными, или эрмитовыми , должно равняться сумме их средних значений.

Эта посылка оправдана в том случае, если эти наблюдаемые величины могут быть измерены в совместимых друг с другом экспериментах. Однако она не работает в случае, если измерения каждой их двух наблюдаемых взаимно несовместимы, поскольку тогда определение их суммы теряет физический смысл. Эту проблему в принципе можно преодолеть с помощью дополнительных измерений на другой аппаратуре, которые могут определить новую наблюдаемую, соответствующую этой сумме.

Но это потребует введения еще одного оператора, о котором в теореме фон Неймана ничего не говорится. В итоге доказательство фон Неймана теряет силу. Интересно, что первой к такому выводу пришла в 1935 году ученица великого математика Эмми Нётер Грета Герман Grete Hermann , но ее работа была опубликована в малоизвестном философском журнале и потому физики ее просто не заметили.

В профессиональном сообществе уязвимость теоремы фон Неймана была осознана только в 1950-е годы. Однако у квантовой механики и раньше имелись критики — и прежде всего Альберт Эйнштейн. Ему не нравилось в ней многое: принципиально вероятностный характер, гейзенберговское соотношение неопределенностей и вытекающая из него невозможность одновременного определения координат и скоростей частиц, отсутствие ясности в решении проблемы квантовомеханических измерений.

Но больше всего Эйнштейна раздражала несовместимость его собственных представлений о физической реальности с так называемой копенгагенской интерпретацией квантовой механики , предложенной Нильсом Бором и его единомышленниками. Согласно Бору, состояние любой квантовой системы нельзя рассматривать безотносительно к аппаратуре, с помощью которой получена информация о ее поведении. Теория в состоянии предсказать вероятности тех или иных исходов измерений квантовомеханических объектов, но ровно ничего не может сказать о том, каковы же значения измеряемых величин «на самом деле» — строго говоря, сам этот вопрос по сути беспредметен.

Состояние «неизмеренной» системы не просто неизвестно — оно вообще не определено, а посему и рассуждать о нем не имеет смысла. Эйнштейна не устраивала подобная логика, и он всячески пытался ее опровергнуть. Для этого он изобретал воображаемые опыты, которые Бор успешно интерпретировал в свою пользу.

Однако Эйнштейн не отступал. В 1935 году, уже работая в США в принстонском Институте фундаментальных исследований, он опубликовал описание очередного мысленного эксперимента, который, по его расчетам, неопровержимо доказывал ущербность квантовой теории. Эта модель послужила предметом долгих дискуссий Эйнштейна со своим ассистентом Натаном Розеном и коллегой по институту Борисом Подольским , уроженцем Таганрога и бывшим руководителем отдела теоретической физики харьковского Физико-технического института.

Статья, фактически написанная Подольским, появилась за подписями всех троих ученых A. Einstein, B. Podolsky and N.

Rosen, 1935. Can quantum-mechanical description of physical reality be considered complete? Именно эта работа, которую цитируют под аббревиатурой ЭПР, проложила путь к концепции квантового спутывания.

В свое время она не вызвала особого резонанса, однако сегодня ее относят к числу самых глубоких исследований теоретической физики двадцатого столетия. Фото из статьи O. Rousselle, 2019.

Foundations of quantum physics and wave mechanics Эйнштейн, Подольский и Розен исходили из двух предпосылок, которые они считали самоочевидными. Во-первых, любой атрибут физической системы, который можно предсказать со стопроцентной вероятностью, не возмущая эту систему в процессе измерений, является, по определению, элементом физической реальности. Во-вторых, полное описание системы должно включать в себя сведения обо всех таких элементах естественно, ассоциированных именно с этой конкретной системой.

Далее следует сам мысленный эксперимент. Предположим, что мы изготовили пару одинаковых частиц A и B, которые в начальный момент начинают движение в строго противоположных направлениях с равными импульсами и, следовательно, скоростями такая операция возможна и в сфере действия квантовой механики. Принцип неопределенности не позволяет одновременно точно измерить положение и импульс каждой частицы в любой из последующих моментов, но это и не требуется.

Позволим квантовым близняшкам удалиться друг от друга подальше, а затем, когда нам это заблагорассудится, определим координаты частицы A, что в идеале можно сделать с нулевой погрешностью. Тем самым мы немедленно получаем стопроцентно достоверную информацию о том, где находилась в тот же момент и частица B. Отметим, что наша аппаратура взаимодействовала исключительно с частицей A, а состояние второй частицы оставалось невозмущенным.

Следовательно, положение частицы B следует счесть элементом физической реальности. Вместо того, чтобы выяснять координаты частицы B, мы можем измерить ее импульс, причем опять-таки идеально точно. Поскольку суммарный импульс пары равен нулю, мы автоматически узнаем и величину импульса частицы A, ни в коей мере ее не трогая.

Следовательно, и эта величина — элемент физической реальности. Однако уравнения квантовой механики позволяют вычислить положение и импульс частицы лишь приближенно, с той степенью точности, которую допускает соотношение неопределенностей. А если это так, делают вывод ЭПР, то квантовомеханическое описание реальности не является полным.

Что и требовалось доказать. Реакция столпов физического сообщества на эту работу была предсказуемо жесткой. Вольфганг Паули без обиняков написал Гейзенбергу, что Эйнштейн поставил себя в дурацкое положение.

Дифракция электронов. Вот в этом научно-популярном фильме физик Джим Аль-Халили объясняет, что будет, если из особой пушки через такое же препятствие с двумя просветами стрельнуть всего лишь ОДНИМ-единственным электроном. Но как только сие непонятно что сталкивается с беспросветным препятствием — превращается в добропорядочную частичку. А дальше — со всеми остановками. За эти сотню с лишним лет после "отчаянного" выступления Планка человечество погрузилось в бездну неизвестности уже довольно глубоко.

Выяснилось, что кванты могут состоять в непостижимых отношениях, как некоторые люди: у одного в далёкой дали что-то меняется, другой немедленно это ощущает и тоже начинает вести себя по-другому. Так называемая квантовая запутанность. Выяснилось, что эти частицы одновременно могут находиться в разных состояниях, отсюда — кот Шрёдингера: суть мысленного эксперимента в том, что кот сидит в коробке, и механизм его убийства сработает в случае распада одного атома, а поскольку квантовые частицы в этом атоме одновременно находятся в разных состояниях, выходит, что кот одновременно и жив, и мёртв. Выяснилось, что кванты проходят через препятствия. Что они самопроизвольно появляются и исчезают.

Что ими кишит даже то, что принято считать абсолютным вакуумом. И как прикажете ощущать себя и окружающий мир в такой реальности?

Новости квантовых компаний. Изображение предоставлено Microsoft Azure — облачной платформой компании Microsoft. До революции квантовых вычислений доживут не все квантовые стартапы, которым удалось выйти на публичный рынок. Природа квантовых технологий делает их полезными для решения трудоемких задач с огромным количеством переменных. Квантовые вычисления потенциально: улучшат финансовое моделирование и повысят эффективность электрических батарей. Например, для обычных суперкомпьютеров существуют неразрешимая задача сортировки потенциальных кандидатов на получение лекарств - для решения потребуется время вычислений, превышающее текущую продолжительность жизни Вселенной".

Новое исследование противоречит мнению Альберта Эйнштейна. Точный механизм пока не определен, но эксперименты новых нобелевских лауреатов доказывают, что квантовая теория действительно описывает естественный мир и что запутанность существует. Это открытие подготовило почву для совершенно новой отрасли вычислительной техники. Сейчас идет гонка за разработкой первых коммерческих квантовых компьютеров, на карту которых потенциально поставлены огромные богатства.

Ниже в хронологическом порядке приведены 9 других достижений, попавших в список лауреатов премии Physics World. Суть метода заключается в использовании специального геля, который впрыскивается в требуемое место, после чего содержащиеся в нем ферменты расщепляют метаболиты организма, запуская процесс полимеризации органических мономеров в геле. В результате в ткани формируются гибкие и долговечные электроды. Источник: Thor Balkhed Пока что успешные эксперименты были проведены на рыбах и пиявках, но в перспективе технология может найти применение в медицине для создания безопасных нейроинтерфейсов, позволяющих расширить возможности человеческого организма или лечить различные заболевания.

Изучение структуры протона при помощи нейтрино Теджин Кай из Рочестерского университета США совместно с коллегами из проекта MINERvA Main Injector Neutrino ExpeRiment to study v-A interactions удалось получить информацию о структуре протона путем «обстрела» пластиковых мишеней, содержащих углерод и водород, пучком нейтрино. Примененный метод может быть использован для дальнейшего изучения взаимодействия нейтрино с материей. Читайте также Летящие насквозь: как физики научились охотиться на неуловимые частицы нейтрино 4. Симулирование расширения Вселенной Группа ученых из Германии, Испании и Бельгии смогла симулировать процесс расширения Вселенной на раннем этапе ее существования. Для этого исследователи использовали конденсат Бозе-Эйнштейна — такое название носит агрегатное состояние вещества из бозонов и разреженного газа, охлажденного до температур, близких к абсолютному нулю. В эксперименте конденсат имитировал Вселенную, а двигавшиеся в нем квазичастицы фононы — квантовые поля. Изменяя длину рассеяния атомов в конденсате, ученые смогли заставить «вселенную» расширяться с разной скоростью и изучить, как фононы создают в ней флуктуации плотности. Согласно существующим космологическим теориям, схожие процессы происходили после возникновения Вселенной, так что подобное моделирование может пролить свет на многие загадки, занимающие умы ученых.

Физики доказали необратимость квантовой запутанности

Новости науки и техники/. Принципы квантовой физики, ставящие в тупик ученых: парадоксальная физика и ее главные загадки. Актуальные новости и авторские статьи от Rusbase. Независимое издание о технологиях и бизнесе. Международная команда ученых-физиков из НИТУ «МИСиС», Российского квантового центра, Университета Карлсруэ и Университета Майнца из Германии научилась моделировать процессы, которые могут помочь в расшифровке механизмов фотосинтеза.

Квантовые технологии

квантовая физика. воздух6 августа 2015. Как создаются щит и меч квантовой физики. Знай наших квантовая физика. В НИТУ МИСиС создали алгоритм для моделирования работы полупроводниковых лазеров НОВОСТИ Знай наших. Отличная новость! Физики нашли элементарную частицу, "размазанную" на 735 километров. Ученые из MIT выяснили, что нейтрино могут находиться в состоянии квантовой суперпозиции, находясь одновременно в двух разных.

Последние новости:

  • Квантовые технологии
  • Сообщить об опечатке
  • Последние комментарии
  • Восторг и ужас Вселенной: Как квантовая физика перевернула мир и почему она наводит жуть
  • Сверхмощный квантовый компьютер
  • Будь в курсе последних новостей из мира гаджетов и технологий

Похожие новости:

Оцените статью
Добавить комментарий